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ABSTRACT 

Synthetic aperture radar (SAR) observations have been used in numerous studies to estimate soil moisture and 

surface roughness, because of their important roles in many aspects. The objective of this paper is to compare 

the most used radar backscattering models: Oh et al.,Dubois et al., and the Integral Equation Model (IEM)) 

using a wide dataset of SAR (Synthetic Aperture Radar) data. These forward models reproduce the radar 

backscattering coefficients (σ°) from soil surface characteristics (dielectric constant, roughness) and SAR 

sensor parameters (radar wavelength, incidence angle, polarization).This comparison shows that the IEM is 

the most adequate to estimate soil moisture & roughness from SAR data. 

Keywords: Oh Model,Dubois Model,Integral Equation Model (IEM)); Synthetic Aperture Radar (SAR), 

Soilmoisture, Backscattering Coefficients,Surface Roughness. 

 

I. INTRODUCTION 

 

Soil moisture and surface roughness play important roles in various applications such as agronomy, hydrology, 

agriculture, risk prediction, etc. The radar signal, which depends on several radar parameters (incidence angle, 

frequency, polarization), is also correlated with soil surface roughness and moisture content. Synthetic 

Aperture Radar (SAR) data was used widely and successfully used for monitoring the spatial and temporal 

evolution of soil moisture and roughness. The estimation of soil moisture & roughness is done by inverting 

the measured SAR backscatter through SAR backscattering models (both empirical and physical). 

A number of radar backscattering models have been reported in the literature. The most frequently used 

empirical models are those developed by Oh et al. [1–4], Dubois et al. [5], and the most popular physical 

models are the Integral equation model (IEM) [6]. These models are supposed to reproduce the radar 

backscattering coefficient and allow the estimation of soil surface parameters (moisture content and 

roughness) from SAR images. Several studies reported important discrepancies between backscattering model 

simulations and SAR observations [11 – 13]. 
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Most studies have been carried out to evaluate and compare the robustness of the backscattering models such 

as Oh, Dubois, and IEM. Zribi et al. [13] evaluated the Oh model and IEM using L-, C- and X-band SAR data 

and in situ measurements. Results show that the IEM provides accurate simulations (RMSE about 2.0 dB) only 

over smooth surfaces. In addition, for rough surfaces and medium incidence angles, Oh model simulations 

retrieve backscattering values very close to the measured ones, while showing poor correlation with 

measured backscattering coefficients over smooth areas. Baghdadi and Zribi evaluated the backscattering 

models IEM, Oh, and Dubois by using large C-band SAR data and in situ measurements. Results showed that 

these models frequently tend to over-estimate or under-estimate the radar signal and the errors in model 

simulation depend on height, surface roughness, rms, soil moisture, mv, and/or incidence angle.This study 

aimsto evaluate the most popular backscattering SAR models (Oh, Dubois, and IEM) by using a wide range of 

SAR data. Most of the methods for soil moisture mapping are based on backscatter models for soil moisture 

estimations. The objective of our study is to evaluate the most common backscatter models using a wide 

dataset of SAR data acquired from numerous agricultural sites. Thus, this study should be of great importance 

to the scientific community since it helps to understand the backscatter model’s performance for a wide range 

of soil surface conditions, acquired for several study areas throughout the world by numerous SAR sensors. 

 

II. SYNTHETIC APERTURE RADAR (SAR) 

 

Backscattering signals measured using SAR are affected by land surface characteristics i.e. dielectric constant, 

the soil surface roughnessof the soil, and the physical and geometrical properties of vegetation, size, shape, 

orientation, etc. [15] The main characteristics of the currently operating spaceborne SAR sensors along with 

some past and future sensors are summarised in Table 1.[16]SAR remote sensing has the following 

characteristics and advantages[18][15]:(a)estimating SM change using repeat observations, (b) correcting the 

effects of surface roughness based on a multi-incidence angle (c) a combination of high spatial-spatial 

resolution observations from active microwave sensors and coarse observations from passive microwave 

sensors, (d) measuring SM for bare soil quantitatively using dual polarization L-band or three- polarization. 

 

Table 1. Characteristics of major spaceborne SAR systems. 

 

Platform Sensor Polarization Band(s) Highest Spatial 

Resolution(m) 

Swath 

Width (km) 

Mission 

SEASAT SAR HH L 25 100 June-Oct 1978 

SIR-A SAR HH L 40 50 Nov 12-15th 

      1981 

SIR-B SAR HH L 25 30 Oct 5-13th 

      1984 

Almaz-1 SAR HH          S 13 172 Mar 31st 1991- 

Oct 17th 1992 
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ERS-1 AMI VV          C 30 100 July 17th, 1991- 

Mar 10th, 2000 

JERS-1 SAR HH          L 18 75 Feb 11th, 1992- 

Oct 12th, 1998 

SIR-C/X-SAR SIR-C VV,HH,HV, L, C, X 30 10-200 April 1994 

 X-SAR VH, HH    Oct 1994 

ERS-2 AMI VV           C 30 100 April 21st 1995- 

RADARSAT-1 SAR HH           C 10 100-170 Nov 28th, 1995- 

SRTM C-SAR VV, HH          C, X 30 50 Feb 11th – 22nd 

 X-SAR HH    2000 

ENVISAT ASAR VV,HH,HH/V

V 

        C 30 100-400 Mar 1st 2002- 

 

ALOS 

 

PALSAR 

HV/HH,VH/V

V 

Quad-pol 

 

L 

 

10 

 

70 

 

Jan 24th 2006- 

TerraSAR-X X-SAR Quad-pol X 1 10-100 June 15th 2007- 

RADARSAT-2 SAR Quad-pol C 3 10-500 Dec 14th 2007- 

COSMO/ 

SkyMed Series 

TecSAR 

SAR-2000 

 

SAR 

Quad-pol 

HH, HV, VH, 

VV 

X 

 

X 

1 

 

1 

10-200 

 

40-100 

June 8th& Dec 8th, 2007- 

21st Jan 2008 

SAR-Lupe SAR -         X <1 - Dec 2006 & Jul 

      2008- 

Kondor-5 SAR HH,VV S 1 - 2009 

TanDEM-X SAR Quad-pol X 1 10-150 2009 

RISAT SAR Quad-pol C 3 30-240 2009 

HJ-1C SAR HH, VV           S 20 - 2009 

ARKON-2 SAR - X, L, P 2 - 2011 

MapSAR SAR Quad-pol L 3 20-55 2011 

KompSAT-5 SAR HH, HV, VH, 

VV 

         X 20 100 2011 

SAOCOM-1 SAR Quad-pol L 7 50-400 2011 

RADARSAT SAR Quad-pol C 3 20-500 2012 – 2014 

Constellation 

Mission SMAP 

SAR HH, HV, VV           L 3km 30-1000 2012 

Sentinel-1 SAR         Quad-pol          C 5 400 2013 

Sentinel-1A SAR           C   2014 

Sentinel-1B  SAR           C   2016 
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DESDynl SAR Quad-pol           L 25 >340 2015 

RADARSAT-

Constellation (3 

Satellites) 

SAR       Quad-pol          C          1-3 350 2018 

 

III. IN-SITU MEASUREMENTS 

 

Most of the techniques have been used for measurements of soil moisture and surface roughness using active 

microwave-based models. 

3.1 Soil Moisture Measurements 

The soil moisture is described as the level of saturation in the upper soil layer relative to the soil field capacity 

and is regulated by the precipitation and potential evaporation and is highly variable in space and time.Most 

of the studies have compared the estimation of soil moisture using active microwave sensors like (Shoshany et 

al., 2000; Kelly et al., 2003; Baghdadi et al., 2006; Rahman et al., 2008; Zribi et al., 2011; Das and Paul, 

2015).Shoshany et al. (2000) have estimated Gravimetric SM converted into volumetric SM (%). 

Gravimetric residual moisture method and volumetric moisture content have been widely used for SM 

measurements. Gravimetric SM (mg) values were obtained from laboratory analysis and converted into 

volumetric soil moisture (Vsm): [20] 

𝑉𝑠𝑚 = 𝑚𝑔 ∗ 𝑠𝑏𝑑                                  (1) 

Where, sbd multiplying bulk density. 

 Further, Mohan et al. (2015) have estimated gravimetric soil moisture (GSM) as: 

𝐺𝑆𝑀 =  
𝑀𝑤𝑎𝑡𝑒𝑟

𝑀𝑠𝑜𝑖𝑙
=  [

𝑊𝑤𝑒𝑡−𝑊𝑑𝑟𝑦

𝑊𝑑𝑟𝑦
]           (2) 

Using simple formula volumetric soil moisture can be calculated as: 
𝑊𝑒𝑡 𝑤𝑒𝑖𝑔ℎ𝑡−𝐷𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡

ℎ𝑒𝑖𝑔ℎ𝑡
                        (3) 

3.2 Roughness Measurement: 

After the soil moisture, the surface roughness is another important factor that affects the backscattering SAR 

signature, because it determines how the incidence wave interacts with the surface.  There are several ways 

to describe the natural surface roughness, and two frequ0ently used methods are: fractal geometry theory and 

statistical description [21]. The fractal geometry theory describes the complicated surface roughness structure, 

especially for irregular and fragmented soil structures [22]. The surface roughness model helps to describe the 

surface height variations with respect to the ground surface level. 

 

IV. BACKSCATTERING COEFFICIENTS 

 

The backscattering coefficient of soil represents the relationship between soil properties and the 

scatterometer responses [23]. Some of the factors that are known to govern backscattering behavior are: i) 

dielectric constant of the vegetation material which is strongly influenced by moisture content; ii) the shape 
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distribution; iii) orientation distribution. iv) size distribution of the scatterers and roughness and dielectric 

constant of the underlying soil surface [24]. From the backscattering coefficient, we can directly calculate the 

soil dielectric constant [25].It shows a linear relationship with SM as [20]. 

                                            𝜎° = 𝐴 + 𝐵. 𝑊                       (4) 

Where A is the𝜎° of a completely dry soil surface and B is the sensitivity of 𝜎° to change with the surface SM 

content. 

 

Description of scattering models:  

The most common approaches used to develop models for soil moisture retrieval are developing direct 

theoretical or physical models by simulating the backscattering coefficients in terms of soil attributes such as 

the dielectric constant and the surface roughness for an area with known characteristics. The dielectric 

constant of the soil surface and hence the soil moisture content can be estimated from mathematical inversion 

of these models.[26] 

 

1.The Semi-Empirical Oh model 

Oh, et al. developed from 1992 to 2004 several versions of a semi-empirical backscattering model. Based on 

theoretical models, scatterometer measurements, and airborne SAR observations, the Oh model is built over a 

wide variety of bare soil surfaces. The Oh model relates the co-polarized ratio p (=σ𝐻𝐻
0 /σ𝑉𝑉

0 ) and the cross-

polarized ratio q (=σ𝐻𝑉
0 /σ𝑉𝑉

0 ) to incident angle (θ), wave number (k), the standard deviation of surface height 

(Hrms), correlation length (L),soil moisture (mv), dielectric constant (εr),Γ0 is the Fresnel reflectivity. The 

initial version of the Oh model is defined as: 

𝑝 =
𝜎°𝐻𝐻

𝜎°𝑉𝑉
= [1 − (

𝜃

90°
)

1

3Γ0
𝑒−𝑘 𝑟𝑚𝑠]

2

                           (5) 

q= 
𝜎°𝐻𝑉

𝜎°𝑉𝑉
= 0.23√Γ0 (1-𝑒−𝑘 𝑟𝑚𝑠)(6) 

Where, 

Γ0 = |
1−√𝜖𝑟

1+√𝜖𝑟
|

2

                                         (7) 

Oh et al. [14] proposed a new expression for q to incorporate the effect of the incidence angle: 

                      q= 0.25√Γ0 (0.1+𝑠𝑖𝑛𝜃0.9) (1-𝑒−[1.4−1.6Γ0]𝑘 𝑟𝑚𝑠)                (8) 

The expressions for p and q were again modified in 2002, and an expression was proposed for the cross-

polarized backscatter coefficient (Oh et al. 2002): 

p=1 − (
𝜃

90°
)

0.35 𝑚𝑣−0.65

𝑒−0.4(𝑘 𝑟𝑚𝑠)1.4
   (9)   

q= 0.1 0.1 (
𝑟𝑚𝑠

𝐿
+ 𝑠𝑖𝑛1.3𝜃)

1.2
(1 − 𝑒−0.9(𝑘 𝑟𝑚𝑠)0.8

   (10) 

𝜎𝐻𝑉 
° =0.11m𝑣0.7𝑐𝑜𝑠2.2 𝜃(1 − 𝑒−0.32(𝑘 𝑟𝑚𝑠)^1.8   (11) 

Given that the measurement of the correlation length is not exact and that the ratio q is insensitive to the 

roughness parameters, Oh (2004) proposed a new formulation for q that ignores the correlation length: 

q=0.095 (0.13 +  sin 1.5θ) 1.4(1-𝑒−1.3 (𝑘 𝑟𝑚𝑠)^0.9   (12) 
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Oh’s models were compared with the experimental database using the ratios p and c. The ratio of c is defined 

from the semi-empirical formulations of p and q. 

 

2. The semi-empirical Dubois model: 

Dubois et al. (1995) suggested a semi-empirical approach for modelling radar backscatter coefficient for co-

polarised backscatter only, using scatterometer data collected at six frequencies between 2.5 GHz and 11GHz 

[25]. The expressions involve the angle of incidence, the dielectric constant, the rms surface height and the 

wavelength: 

𝜎𝐻𝐻
° = 10−2.75 (

𝑐𝑜𝑠1.5 𝜃

𝑠𝑖𝑛3𝜃
) 100.028𝜀𝑟,𝑡𝑎𝑛𝜃(𝑘 𝑟𝑚𝑠 𝑠𝑖𝑛𝜃)1.4𝛌0.7           (13) 

𝜎𝑉𝑉
° = 10−2.75 (

𝑐𝑜𝑠3 𝜃

𝑠𝑖𝑛3𝜃
) 100.046𝜀𝑟,𝑡𝑎𝑛𝜃(𝑘 𝑟𝑚𝑠 𝑠𝑖𝑛𝜃)1.1𝛌0.7       (14) 

 

3. The Integral Equation Model (IEM): 

The IEM is a physically based radioactive transfer backscattering model application to a wide range of 

roughness values (Fung et al. 1992). The parameters required to compute the backscattering coefficient from 

the IEM model are correlation length, rms surface height, dielectric constant, polarisation and incidence 

angle and surface parameters. Over bare soils in agricultural areas, the backscatter coefficients of the surface 

contribution are expressed as: 

𝜎𝑝𝑝
° =

𝑘2

2
|𝑓𝑝𝑝|2𝑒−4𝑟𝑚𝑠2𝑘2 cos2 𝜃 ∑

(4𝑟𝑚𝑠2𝑘2 cos2 𝜃)^𝑛 

𝑛!

+∞

𝑛 =1

𝑊(𝑛)(2𝑘𝑠𝑖𝑛𝜃, 0) 

+
𝑘2

2
𝑅𝑒 (𝑓𝑝𝑝

∗ 𝐹𝑝𝑝 )𝑒−3𝑟𝑚𝑠2𝑘2 cos2 𝜃 ∑
(4𝑟𝑚𝑠2𝑘2 cos2 𝜃)^𝑛 

𝑛!

+∞

𝑛=1

𝑊(𝑛)(2𝑘𝑠𝑖𝑛𝜃, 0) 

           +
𝑘2

8
|𝑓𝑝𝑝|2𝑒−2𝑟𝑚𝑠2𝑘2 cos2 𝜃 ∑

(𝑟𝑚𝑠2𝑘2 cos2 𝜃)^𝑛 

𝑛!
+∞
𝑛=1 𝑊(𝑛)(2𝑘𝑠𝑖𝑛𝜃, 0)                        (15) 

Where p is H and V polarisation, k is the radar wave number(k=2π/λ), rms is the standard deviation of 

surface height, θ is the radar angle of incidence, W(n)is the Fourier Transform of the nth power of the surface 

correlation function, fpp is a function of the incidence angle and the Fresnel reflection coefficient and Fpp is 

a function of the incidence angle,𝜀𝑟 is the dielectric constant of the soil, 𝜇𝑟 is the relative permittivity. 

Where,  𝑓ℎℎ =
−2𝑅ℎ

𝑐𝑜𝑠𝜃
 

𝑓𝑣𝑣 =
2𝑅𝑣

𝑐𝑜𝑠𝜃
 

𝑓ℎℎ = 2
sin2 𝜃

𝑐𝑜𝑠𝜃
[4𝑅ℎ − (1 −

1

𝜀𝑟
) (1 + 𝑅ℎ)2] 

𝑓ℎℎ = 2
sin2 𝜃

𝑐𝑜𝑠𝜃
[(1 −

𝜀𝑟 cos2 𝜃

𝜇𝑟 𝜀𝑟 − sin2 𝜃
) (1 − 𝑅ℎ)2 − (1 −

1

𝜀𝑟
) (1 + 𝑅𝑣)2] 

 𝑅ℎ =
𝜇𝑟𝑐𝑜𝑠𝜃−√𝜇𝑟𝜀𝑟−sin2 𝜃

𝜇𝑟𝑐𝑜𝑠𝜃+√𝜇𝑟𝜀𝑟−sin2 𝜃
: Fresnel reflection coefficient at horizontal polarization 

𝑅𝑣 =
𝜀𝑟𝑐𝑜𝑠𝜃−√𝜇𝑟𝜀𝑟−sin2 𝜃

𝜀𝑟𝑐𝑜𝑠𝜃+√𝜇𝑟𝜀𝑟−sin2 𝜃
: Fresnel reflection coefficient at vertical polarization 

𝑊𝑛(𝑎, 𝑏) = 𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑛𝑡ℎ 𝑝𝑜𝑤𝑒𝑟 
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Wn(a, b) = 
1

2𝜋
∬ 𝜌𝑛(𝑥, 𝑦)𝑒−𝑖(𝑎𝑥+𝑏𝑦)𝑑𝑥𝑑𝑦                         (16) 

The distribution of ρ(x, y) is exponential for low surface roughness values and Gaussian for high surface 

roughness values.The correlation functions for one-dimensional roughness profiles are defined as follows:  

       ρ(x) = e^(-(x/L)^τ                                          (17) 

where L is the correlation length. 

The backscattering IEM has a large validity domain. Baghdadi et al. (2004) and Zribi (1998) showed that, for 

bare soil in agricultural areas, IEM performs better with a fractal autocorrelation function. This is the 

function used in the present study. For retrieving surface roughness and soil moisture from SAR data, authors 

often use the original version of the IEM model. 

 

V. CONCLUSION 

 

The semi- empirical models of Oh and Dubois as well as the IEM physical backscattering model were 

evaluated using SAR data. The objectives of this paper are to compare the three models Oh, Dubois and IEM 

models. Comparison between the radar data by the three most commonly used surface radar backscattering 

models (Oh, Dubois and IEM) concludes that IEM performs better from overview of literatures. 
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